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Abstract
Two damped coupled oscillators have been used to demonstrate the occurrence
of exceptional points in a purely classical system. The implementation was
achieved with electronic circuits in the kHz-range. The experimental results
perfectly match the mathematical predictions at the exceptional point. A
discussion about the universal occurrence of exceptional points—connecting
dissipation with spatial orientation—concludes this paper.

PACS numbers: 03.65.Vf, 02.30.−f, 41.20.−q

A surprising phenomenon occurring in systems described by non-Hermitian Hamiltonians has
been observed in a number of experiments: the coalescence of two eigenmodes. If the system
depends on some interaction parameter λ, the value λEP at which the coalescence occurs
is called an exceptional point (EP) [1]. At an EP, the eigenvalues and eigenvectors show
branch point singularities [1–5] as functions of λ. This stands in sharp contrast to two-fold
degeneracies, where no singularity but rather a diabolic point [6] occurs. EPs have been
described in laser induced ionization of atoms [7], in acoustical systems [8], and have actually
been observed in microwave cavities [9–11], in optical properties of certain absorptive media
[12, 13] and in ‘crystals of light’ [14]. The broad variety of physical systems showing EPs
indicates that their occurrence is generic. So far EPs have been analysed for the special case of
a complex symmetric effective Hamiltonian [15] used for the description of dissipative wave
mechanical systems such as in microwave cavities.

The physical interest in EPs is not only due to their universal occurrence in virtually all
problems of matrix diagonalization. It is in particular the chiral character associated with
the wavefunctions at the EP [16]. This has been experimentally confirmed recently [11] and
also thoroughly discussed in optics for anisotropic absorptive media [17]. The fascinating
point is the wavefunction at the EP: not only is there—at the point of the two coalescing
energies—one and only one state vector, but—for a complex symmetric matrix—its form is
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Only one EP of the pair is accessible in the laboratory as only one is associated with a negative
sign of the imaginary part of the energy. The labels of the non-vanishing components in
equation (1) are the labels of the two coalescing energies. Note that there is no parameter
dependence; the form of the state vector is robust. We may associate this form with a circularly
polarized wave. For a general non-Hermitian matrix the ratio of the two relevant components
is no longer ± i but an arbitrary complex number that can in general be associated with an
elliptic polarisation [17].

In this paper we report the results of a plain classical experiment where an EP has been
identified and so has the orientation that goes with it. It is the case of two coupled damped
oscillators. This has been proposed in [18] for two mechanical oscillators. In the quoted paper
a discussion of the EPs is extended to general matrices being no longer complex symmetric.
In fact, the classical equations of motion for the momenta pj and coordinates qj read for the
two mechanical oscillators
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with

M =


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
 (3)

where ωj − ikj , j = 1, 2 are essentially the damped frequencies without coupling and f and
g are the coupling spring constant and damping of the coupling, respectively. The driving
force is assumed to be oscillatory with one single frequency and acting on each particle with
amplitude cj . Here we are interested only in the stationary solution being the solution of the
inhomogeneous equation which reads


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
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
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
 exp(iωt). (4)

Resonances occur for the real values ω of the complex solutions of the secular equation

det|iω − M| = 0 (5)

and EPs occur for the complex values ω where
d

dω
det|iω − M| = 0 (6)

is fulfilled together with equation (5). Note that M is non-symmetric.
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Figure 1. Measurement set-up.

Table 1. Component values.

Component Value Unit Tolerance (%)

Cp
a 65 nF 5

R1 3.0 � 10
Rp

b 520 � 5
Lp 1.80 mH 5
Ls 2.55 mH 5
Rs 10.0 k� 5
R2 3.0 � 10
Cs 47 nF 5
M 0.14

√
LpLs = 0.3 mH 5

a Can be varied from 39.0 to 77.6 nF in steps of 0.22 nF.
b Can be varied from 430 to 610 � in steps of 10 �.

For easy implementation electronic circuits are used rather than the mechanical oscillators.
The momenta and coordinates are replaced by voltage and current, respectively. The
unperturbed undamped frequencies are given by ω2

j = 1/(LjCj ) with L and C being the
inductance and capacitance, while damping and coupling are effected by resisters and mutual
inductance. To allow for complex values of the effective inductance, resisters have been used
in parallel to the inductance.

The actual experimental set-up is shown in figure 1. The two circuit parameters that can
be changed are the circuit capacitance Cp and the parallel resistance Rp. Standard electronic
components were used to construct the circuit. The component values are summarized in
table 1. The two inductors consist of multi-layer cylindrical air core windings wound onto PVC
plastic coil formers. The coils are placed next to each other with their geometric axes aligned.
The distance between them can be varied in order to change the coupling, i.e. the mutual
inductance of the two coils. Input voltage signals vA and vB are connected to ports A and B
of the circuit and are used to excite the system. The circuit response is given by the input
currents iA and iB into ports A and B, respectively. The two input currents can be determined
by measuring the voltage drop over the series resistances R1 and R2. Using Ohm’s Law the
currents can be calculated.

The input ports A and B of the circuit have to be excited by ideal voltage sources. In
a practical set-up the excitation voltage sources must have output impedances, ZA and ZB ,
that are much lower than the input impedances of the two circuit ports. The minimum input
impedance of ports A and B are approximately R1 and R2, respectively. Buffers are used to
reduce the signal impedance such that ZA � R1 and ZB � R2.



7816 T Stehmann et al

A microprocessor is used to enable automatic multiple data collection. The
microprocessor interfaces to a PC and varies the values of two circuit components Cp and Rp.
The input currents are measured with a digital oscilloscope. The oscilloscope is connected
to the same PC as the microprocessor. The data from the oscilloscope are read directly into
the PC where it is processed. The complete experiment is controlled with a software package
called LabVIEW. A program written in LabVIEW is responsible for communicating with the
microprocessor and the digital oscilloscope and processing the measurement data.

The first step in the measurement process is to determine the system eigenvalues. The
eigenvalues can be determined from the system’s frequency response, i.e. the system’s
spectrum. The frequency response FA(ω) of the system at port A is given by [19]

FA(ω) = IA(ω)

VA(ω)
=

∑M

i=0
aiω

i

∑N

i=0
biω

i
(7)

with M � N . Here VA(ω) and IA(ω) are the spectra of the applied voltage signal and the
input current response at port A, respectively. A similar expression holds for the frequency
response at port B. For the circuit in figure 1, it is N = M = 4. The resonance frequencies
are the zeros of the denominator in equation (7).

The system’s frequency response can be determined by either performing measurements
in the frequency or time domain. Time domain measurements yield more accurate results
compared to frequency domain measurements. For a time domain measurement the system
is excited by a short voltage pulse. The resulting response of the input current at a port
is the impulse response of the system for that port. The Fourier transform of the impulse
response is equal to the system’s frequency response. The frequency response depends on
the measurement configuration, i.e. the port where the impulse response is measured and the
relative amplitude of the excitation pulse at ports A and B. In equation (7) only the roots of the
numerator are dependent on the measurement configuration. The roots of the denominator,
i.e. the eigenvalues, are independent of different measurement configurations.

In a practical set-up it is not possible to generate infinitely short pulses. However, the
pulse width tp must be small compared to the response time of the system. A valid impulse
response must obey

tp � 1

max(|ωi |) (8)

with max(|ωi |) the eigenvalue with the largest modulus.
For this experiment both ports A and B where excited by the same voltage pulse. The

input current into port A was measured. Applying a Fourier transform to the measured impulse
response current the frequency response of the system is obtained. By fitting equation (7) to
the measured data the coefficients ai and bi can be determined and the resulting eigenvalues
of the system calculated.

The measured eigenvalues for different values of Rp and Cp are plotted on the complex
energy plane in figure 2. Only two of the four eigenvalues of the system are plotted for each Rp

and Cp value pair. The other two eigenvalues are mirrored with respect to the imaginary axis.
Three resistance values were used, Rp = 430, Rp = 470 and Rp = 510. For each resistance
value the capacitance was changed from 57.0 nF to 72.0 nF in steps of 0.22 nF. The resulting
locus of eigenvalues repels from a point in the energy plane, which is the singular point of the
system. The direction of each locus for an increasing value of Cp is indicated in figure 2. We
denote the value of the frequency at the singular point by S1 and find S1 ≈ 92 000− i11 500 as
indicated by a cross in figure 2. A second singular point S2 (not shown) is also measured and
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Figure 2. Measured system eigenvalues.

is mirrored with respect to the imaginary axis of the complex energy plane, i.e. iS1 = (iS2)
∗.

The measurement error is less than 6%.
In order to measure the system phase, the system has to be excited with a steady-state

sinusoidal signal. A real sinusoidal signal always consists of two frequency components
ω1 and ω2 for which iω1 = (iω2)

∗. Hence, to measure the system phase at the singular point,
the system is excited with two complex frequencies equal to the two singular point values
S1 and S2. Furthermore, the circuit values of Rp and Cp are set to obtain eigenvalues as close
as possible to the two singular points. The excitation signals at port A and B have the form

v(t) = C sin(ω0t + φv) e−γ0t (9)

with ω0 = |Re(S1)| = |Re(S2)| and γ0 = −Im(S1) = −Im(S2). The phase of the signal is φv

and the amplitude C. For the measured system the value of γ0 is positive (γ ≈ 11 500 s−1).
This implies a decaying sinusoidal signal.

The aim of the experiment is to measure the steady-state phase difference �φi between
the two input currents iA and iB . This is achieved by measuring the steady-state current
response at the two ports simultaneously. The system is linear and the current response will
have the same form as the excitation voltage in equation (9). The phase of the two input
currents, φiA and φiB , can be extracted by fitting equation (9) to each of the measured current
responses. The amplitude and phase are the fitting parameters. The phase difference is then
simply �φi = φiA − φiB .

However, the signal in equation (9) is not a power signal, i.e. it does not have a finite
power content. It is therefore not possible in practice to generate such a signal. To perform the
phase measurement the excitation is switched on at t = t0. For t < t0 the signal is zero. The
on-set of the signal at t = t0 introduces a decaying transient response. A reliable measurement
of the steady-state phase can only be performed at t − t0 � γ −1

0 , where the transient response
has decayed and can be neglected compared to the steady-state response.

To generate signals as described by equation (9) the circuit values of the circuit in figure 1
were so chosen that singular points and eigenvalues are obtained within the audible frequency
range. This enables the excitation signals to be generated with a standard computer sound
card. LabVIEW is again used to drive the sound card of the PC and generate any arbitrary
signal within the audible frequency range (20 Hz to 20 kHz). The stereo output of a computer
sound card can be used to generate two different signals simultaneously.
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Figure 3. Measured system phase.

Finally, the steady-state phase difference �φi between the input currents was measured
while exciting both ports. The phase difference �φv between the two excitation signals was
varied from 0 to 2π radians. In figure 3 the measured current phase difference �φi is plotted as
a function of the excitation phase difference �φv . Also shown is the phase difference between
the two input currents, iA and iB , and the excitation voltage vB at port B. The measured phase
difference �φi is largely independent of the excitation phase difference �φv with a value of
approximately π/2 and a measurement error of 5%.

As far as the results are concerned we emphasize in particular two points: (i) the similarity
of figure 2 with the corresponding figure for instance in [7] or [10] is striking; here it refers to
electronic circuits, in the quoted papers to atomic physics or microwave cavities, respectively;
(ii) the measured phase difference π/2 which is independent of the phase of the excitation,
underlines once again the universal and robust chiral character of the state vector at the EP. We
mention that, owing to the non-symmetric nature of the matrix considered (see equation (3)),
there is in fact a slight deviation [18]. For the parameters chosen the precise quotient of the
amplitudes actually is −0.08 + i1.99 . . . and not i as in equation (1). In other words, there is a
slight deviation from the circular towards an elliptic polarization. Yet an orientation prevails.

In this, like in all other experiments where EPs have been observed, dissipation is playing
a foremost role. In fact, in quantum mechanics or optics, only absorption enables access in
the laboratory to the singularity in the complex plane. And even in the experiment described
in this paper, where the underlying matrices are no longer symmetric, dissipation is crucial to
give rise to an EP. The decay of the states provides a direction of the time axis. In classical
and quantum systems absorption—and decoherence in the latter case [20]—occurs due to the
interaction with the environment, the presence of the open channels is effectively described
by complex interaction parameters [15, 21] or, as in the present case, explicitly by Ohmic
resisters.

In turn, the wavefunction at the EP is usually chiral in character as has been discussed in
[16] and confirmed experimentally the first time in [11]. We see here an intrinsic connection—
provided by the mathematics of an EP—between the direction of time and a given direction
in space. In fact, the present experiment can serve to define a direction in one-dimensional
space. At the EP, it is the one oscillator whose phase is leading while the phase of the other
is lagging. These roles are fixed unequivocally for a given parameter set, unrelated to space.
Viewing the oscillators placed along a straight line an orientation is defined along this line.
This is not trivial and is caused by the mechanism at an EP: one, and only one-and-the-same
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oscillator has the leading phase, and this feature is cast in stone by a system that has no
a priory spatial orientation. It is dissipation that brings about spatial orientation.

This does not mean, at this stage, that a classical set-up can provide a distinction between
left and right. One is tempted to find a truly three-dimensional setting where one EP might do
just that.
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